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Abstract  

Recent reports estimate that the marshes of the Mississippi Delta receive just 30% of the 

sediment necessary to sustain current land area1.  An extensive monitoring campaign by the 

USGS and LCPRA provides direct measurements of sediment accumulation, subsidence rates, 

and deposit characteristics along the coast over the past 10 years2, allowing us to directly 

evaluate this sediment balance. By interpolating bulk density, organic fraction, and vertical 

accretion rates from 273 sites, a direct measurement of organic and inorganic sediment 

accumulation can be made. Results show that a total of 82 MT/year of sediment is delivered to 

the coast. Using a fluvial sediment discharge of 113 MT/yr1, 52% of the riverine transported 

sediment is accumulated in the coastal lands of the Mississippi Delta. Assuming an average 9 

mm/yr subsidence rate3 and 3 mm/yr sea-level rise1, this accumulation results in a 2.7 MT/yr 

(3.5%) sediment mass surplus. However, there is a 0.014 km3/yr (5.4%) sediment volume deficit 

caused by the sediment porosity being too small to fill the accommodation space. About 20 

MT/yr inorganic and 6 MT/yr organic sediment initially accumulates in deltaic areas directly 

nourished by the Mississippi and Atchafalaya rivers, resulting in an initial sediment trapping 

efficiency of 18%. The remaining sediment must be delivered indirectly to the coast after passing 

through the ocean, accounting for another 39 MT/yr of inorganic sediment being trapped on 

coastal marshes. 17 MT/yr organic sediment is produced through marsh plant production.  These 

results suggest that even if current relative sea level rise rates do not change, the gap between 

accommodation and accumulation is not as dire as previously thought.  
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Introduction 

Over the last century, the Louisiana coast has lost about 5000 km2 of land, mainly coastal 

marshes4. Although the rates of loss over the last decade have slowed5, the Louisiana coast still 

loses wetlands each year6. These marshes are economically and environmentally important 

regions, as they have high biodiversity, help mitigate the detrimental impacts of storms, help buffer 

the effects of relative sea level rise (RSLR)7,8, and provide a source of livelihood for the millions 

of people who depend on the coast9. Consequently, recent government efforts have focused on the 

restoration and protection of coastal Louisiana10.  

In order to create the most successful restoration and management plans, an accurate 

estimate of the coastal sediment deficit is needed. A recent analysis of land loss using historical 

surveys and aerial imagery showed that the rates of wetland loss along the coast have drastically 

slowed over the last few decades. Current land loss rates are shown to be about 28 km2/yr, which 

is significantly smaller than the 83 km2/yr observed in the 1970’s. Some potential reasons for this 

dramatic decrease in land loss are the lack of major hurricanes within the last 10 years, as well as 

previous loss of the most vulnerable coastal lands. Further, restoration strategies, such as river 

diversions, have likely been successful in restoring coastal lands5. 

Wetland loss is due to erosion and lack of sufficient deposition. Sediment is typically 

eroded from wetlands by the action of major storms. Major storms increase wave action in 

wetlands, which has been shown to be the primary factor in marsh edge erosion11. About 527 km2 

of wetlands were lost during Hurricane Katrina because of this12. RSLR combined with 

anthropogenic alterations to coastal lands have been interpreted to be the major causes of 

insufficient deposition in coastal Louisiana marshes. Damming and leveeing of the Mississippi 

River in the 1930’s through 1950’s changed sediment fluxes and pathways in the delta. Damming 
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of within the Mississippi Basin has caused a slight decrease of sediment since 198013.  Levee 

construction also prevented floods from transporting sediment directly to large swaths of the delta. 

Since these basins have been cut off from river nourishment, they must receive mineral sediments 

indirectly from the coast.  

Further, increased subsidence rates due to groundwater fluid extraction significantly 

increased the RSLR rate experienced on the coast14. For this reason, land loss on the Mississippi 

Delta has been linked primarily to a sediment deficit to coastal marshes, where accumulation 

cannot keep pace with rising relative sea level1,2,5,15.  

The sediment deficit of the Mississippi Delta was recently estimated by Blum and Roberts 

(2009) to be between 10 and 90 MT/yr (5-30%). This prediction showed that significant drowning 

of coastal lands by 2100 was inevitable1. These predictions were based on various assumptions 

including a 40% trapping efficiency of riverine delivered suspended sediment (~205 MT [mega 

tons]/yr by both Mississippi and Atchafalaya Rivers), a sediment density of 1.5 g/cm3, and 

subsidence rates ranging from 1-8 mm/yr. However, it involved no direct measurement of 

accumulation on the delta itself. Organic sediment accumulation was also not taken into account1. 

However, organic production plays an important role in land building, especially in areas where 

inorganic sediment is not abundant and/or in areas where riverine sedimentation has been 

abandoned16.  

While sediment mass balances and deficits have been calculated along the Louisiana coast1, 

we are lacking a sediment balance and deficit calculated using direct field measurements, primarily 

due to a deficiency of field data. Here, we will show the first ever estimate of sediment mass and 

volume balance along the Louisiana coast calculated with direct field measurements.  
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A novel dataset (CRMS [Coastwide Reference Monitoring System]) compiled by the 

United States Geological Survey (USGS) and Louisiana’s Coastal Protection and Restoration 

Authority (LCPRA) provides direct measurements of recent sediment accumulation, subsidence 

rates, and sediment characteristics along the entire Louisiana coast over the past 10 years2,3. These 

data afford the opportunity to directly observe the sediment balance along the coast, as well as the 

effectiveness of river diversions. 

In this study, we use the CRMS data to calculate an independent, field-based estimate of 

the recent sediment accumulation showing a smaller sediment deficit along the coast than previous 

estimates. By interpolating dry bulk density (ρ; g/cm3), fraction organic matter (Forg; -), and 

vertical accretion rates (Va; cm/yr) across the coast from 273 CRMS sites, we show a new estimate 

of sediment accumulation, both inorganic and organic. We also show the first field-based estimate 

of deltaic wetland sediment trapping efficiency by combining sediment accumulation with direct 

discharge and suspended sediment concentration data from USGS river gauging stations.  These 

estimates are particularly useful for restoration, planning, and management of coastal lands. 

Methods 

Data Collection 

 In cooperation with the USGS and LCPRA, Coastwide Reference Monitoring System 

(CRMS) data shows direct measurements of different coastal marsh characteristics in Louisiana. 

A coastal marsh, whether fresh or salt, is an area that is flooded daily, typically during high tide17. 

These areas are flat, shallow, subaerial parts of the coastline and can extend hundreds of miles 

inland. Each CRMS site serves as a 1 km2 area that can be used for land/water analysis and consists 

of four feldspar plots that measure accretion rates at each site. Accretion rates are specifically the 

height (h) of material that accumulates over a certain amount of time (t). The sites also include a 
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Rod Surface Elevation Table (RSET) that measures surface elevation change, which is influenced 

by both subsurface processes like shallow compaction and accretion rates. The accretion rate gives 

change in soil height above the feldspar plot (Δh), the RSET gives the change in surface elevation 

(Δz), and subsidence (σ) comes from (Δz - Δh)17.  CRMS monitoring captures vertical 

accumulation, and also erosion if it is small enough that the feldspar horizon is not destroyed. 

Lateral erosion, such as at marsh edges, cannot be monitored.  Hence, the dataset does not account 

for subaqueous deposition and/or erosion, marsh edge erosion, or erosion of the marsh interior. 

 Collection of the CRMS data began in 2006 and has since been measuring surface 

elevation change and vertical accretion rates at each site. Sediment characteristics were collected 

in 2006 for 391 sites along the coast, before site establishment. A subset of 273 sites (Figure 1) 

was selected for interpolation based on methods described in Jankowski (2017)2. The subset for 

vertical accretion rates was chosen based on three parameters: (1) the sites were never re-

established because of damage, (2) the sites have at least one continuous vertical accretion record, 

and (3) the accretion record must be at least 6 years long. A mean of all vertical accretion 

measurements was calculated to obtain an average vertical accretion rate for each of the 273 sites2. 

For more information on vertical accretion collection methods please refer to the CRMS Standard 

Operating Procedure Manual17 or Jankowski (2017)2.   
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Figure 1: Red box highlights the study area (Coastal Louisiana). Black dots show the subset of 

273 sites CRMS sites used for this study. These sites are all located in coastal Louisiana and 

display a variety of different environments (i.e. indirectly nourished marsh sites and fluvial-

dominated deltaic marsh sites). Each site has at least a 6-year record of accretion rates, as well 

as data from 24 cm cores, in which bulk density and organic fraction were measured.  

 

Before accretion plots and surface elevation tables were established, a core from each site 

was processed and analyzed for dry bulk density and fraction organic matter at different depths, 

typically 0-24 cm. It is assumed that the average bulk density and organic content of this material 

is characteristic of the material that accumulates on the surface after site establishment. A mean of 

fraction organic content (-) and dry bulk density (g/cm3) was calculated for the 273 sites that had 

viable vertical accretion records along the coast17.  



6 

 

CRMS Data 

 We are interested in using these data for interpolation, so it is imperative to understand 

what the data show. The data are relatively normal with both the accretion rates and dry bulk 

densities being slightly right skewed, likely because the variables cannot have values < 0. The 

median and mean values of all three variables do not differ much (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Histogram of the distribution of the dry bulk densities from the 273 CRMS sites, 

which are an average of the dry bulk densities from 0-24 cm depth at each site. The average dry 

bulk density of the 273 sites is 0.29 g/cm3 and the median is 0.24 g/cm3. (b) Histogram of the 

distribution of the accretion rates from the 273 CRMS sites. The average and median accretion 

rates are 1.1 and 0.95 cm/yr, respectively. (c) Histogram of the distribution of the fraction organic 

matter at each of the 273 CRMS sites. The data points are an average of the fraction organic 

matter from 0-24 cm depth. The average fraction organic matter is 0.33 and the median is 0.30.  

  Further, the variables are all somewhat correlated. However, dry bulk density (g/cm3) and 

organic content (-) are very strongly correlated, as can be seen from an r2 value of 0.87 and a very 

a b 

T

c 

T
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low p-value. These numbers indicate that there is a strong negative relationship between the two 

variables, and as bulk density increases, organic fraction decreases (Figure 3c). However, there is 

only a small, relatively weak relationship between organic fraction and accretion rates, as well as 

bulk density and accretion rates (Figure 3a and 3b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) Weak negative relationship between fraction organic matter (-) and accretion rates 

(cm/yr). Typically, as accretion rates increase, the fraction organic matter decreases. (b) Weak 

positive relationship between accretion rate and bulk density (g/cm3). Typically, as bulk density 

increases, accretion rates increase as well. (c) Strong negative relationship between organic 

content (-) and bulk density (g/cm3). As bulk density decreases, organic content increases.  

Since the variables are correlated, we will take this into account during interpolation and 

error propagation. In order to do so, we will use the calculated covariance numbers (σ) (Table 1).  

a b 

c 
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Table 1: Calculated covariance numbers to show correlation of variable pairs, which are used in 

error propagation calculation.  

 

Variable Pair Covariance Number 

σρForg (bulk density-fraction organic) -0.02732 

σρVa (bulk density-vertical accretion) 0.02955 

σForgVa (fraction organic-vertical accretion) -0.03294 

 

Interpolation 

We use universal kriging to interpolate maps of vertical accretion (Va; cm/yr), dry bulk 

density (ρ; g/cm3), and fraction organic matter (Forg; -). Universal kriging is often used in 

geostatistics to model spatial data because it does not smooth out the data during interpolation. 

Further, universal kriging on a trend surface model allows us to remove any trends in the data that 

may bias interpolation. The interpolation was performed using a 1 km2 grid covering the extent of 

the Louisiana coast. We show end results for two methods of interpolation (Table 1).  

The automap package in R was used to run an ordinary kriging simulation on the data 

points. Ordinary kriging shows that the data exhibit a linear spatial trend. In order to remove the 

trend, a trend surface model was created for each variable. Please refer to the automap R manual18 

for information on how to use the automap package.  

The gstat package in R was used to create a trend surface model, which was then used to 

perform universal kriging using the krige function in the R software package. Please refer to the 

gstat R manual19 for information on how to use the krige function. When fitting a model to the 

semivariogram, there are four different choices: Exponential, Spherical, Gaussian, and Matern. All 

of these models fit the semivariogram data fairly well, so the interpolation model was run using 

each of these choices (Table 2).  
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Table 2: Estimated sediment accumulation (Mton/yr) to the Louisiana Coast (right column) using 

different interpolation methods and semivariogram models. 

  

Method Total Estimated Sediment Accumulation 

(MT/yr) 

Ordinary Kriging 75.2 

Universal Kriging- Exponential Variogram  81.7 

Universal Kriging- Spherical Variogram 79.1 

Universal Kriging- Gaussian Variogram 81.2 

Universal Kriging- Matern Variogram 81.7 

 

Since the choice of the variogram model did not significantly alter the results of the 

interpolation, the exponential model was chosen to perform universal kriging individually on all 

three variables- Va, ρ, and Forg. (Figure 4). See Supplementary Information (Appendix B) for entire 

code. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The experimental variogram and the fitted exponential models for (a) bulk density 

(g/cm3) (b) accretion rates (cm/yr) and (c) fraction organic matter. These models were used for 

interpolation of the variables.  
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The kriging prediction maps were then masked and cropped to include only data that falls 

within study area (Figure 1) using a recent land area polygon3 of coastal Louisiana created using 

ArcGIS. The shapefile used to mask the interpolation was chosen specifically because it excludes 

cities, rivers, areas of high elevation, and levees3. It is also the most recent known land/water 

polygon for the coast, so areas that have already drowned are presumably removed. Depending on 

total current land area, the choice of shape file may alter the trapping efficiency prediction for the 

coast.  

For secondary analysis, directly nourished areas of the coast were compared to areas that 

are indirectly nourished. Directly nourished areas refer to areas of the coast that receive direct 

riverine input, whereas indirectly nourished areas do not have a source of significant direct riverine 

sedimentation, and must therefore receive any sediment either from elsewhere in the marsh, 

shallow bays, or the continental shelf. Thus, the shapefile used for this mask excludes both the 

Atchafalaya River Basin and the Mississippi River Basin, as these are the main areas receiving 

direct riverine sediment. The Mississippi River drains 40% of the entire United States, so smaller 

rivers along the coast are assumed to have negligible sediment loads in comparison. Further, a 

recent study aimed at constraining the sediment budget to the Louisiana Coast also excluded the 

smaller rivers from their analysis, presumably for this same reason20.  

The masked rasters (one map for each variable for total sediment accumulation and one 

map for each variable for indirectly nourished areas) were then multiplied together using raster 

math from the raster package in R. The data, including interpolated data and error for each grid 

square, was then extracted as a csv file (Appendix B).  
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Sediment Mass Accumulation  

Sediment mass accumulation rates for the entire coast were calculated to directly compare 

estimates from Blum and Roberts (2009) of sediment accumulation and sediment deficit along the 

Louisiana coast.  In order to calculate an estimate for total (inorganic plus organic) sediment mass 

accumulated along the coast (𝑚𝑇), the following equation was used:  

𝑚𝑇 = 𝐴𝑖 ∑ 𝜌𝑖𝑉𝑎𝑖

𝑖€𝐴

 

Where 𝑚𝑇 is the total rate of sediment mass accumulation in Mississippi Delta marshes (MT/yr), 

𝑉𝑎𝑖
 is vertical accretion rate in cm/yr at an individual pixel or grid cell (i) within the Mississippi 

River Delta Marsh area (~21918 km2 –size of shapefile), and 𝜌𝑖 is dry bulk density in g/cm3 at an 

individual pixel. 𝐴𝑖  is the area of one individual pixel (1010 cm2 or 1 km2). The same methods were 

applied to calculate an organic sediment load, except the following equation was used: 

𝑚𝑜𝑟𝑔 = 𝐴𝑖 ∑ 𝜌𝑖𝑉𝑎𝑖
𝐹𝑜𝑟𝑔𝑖

𝑖€𝐴

 

 

where 𝑚𝑜𝑟𝑔 is the total mass organic sediment accumulation rate (MT/yr) and 𝐹𝑜𝑟𝑔𝑖
 is fraction 

organic matter at an individual pixel (-). Total inorganic sediment mass accumulation rate 𝑚𝐼 ; 

MT/yr) was then calculated using:  

𝑚𝐼 = 𝑚𝑇 − 𝑚𝑜𝑟𝑔 

Further analysis was conducted to differentiate between areas fed by the Mississippi and 

Atchafalaya Rivers (directly nourished) and the rest of the coast, which is assumed to be indirectly 

nourished. The same analysis was then conducted on the second shapefile excluding the 

Mississippi River and Atchafalaya Basins; though, the new inorganic and organic sediment mass 

accumulation rates are assumed to be areas of indirect nourishment (𝑚𝑂). These numbers were 
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then subtracted from total inorganic and organic sediment mass accumulation rates to determine a 

sediment mass accumulation rate (𝑚𝑅) of areas that are directly nourished.  

 Error for the sediment mass accumulation was propagated using the standard deviation of 

Va, and ρ, as well as Forg for organic sediment accumulation. We also considered spatial 

autocorrelation, but we found it to be negligible because the range of the semivariogram was 10 

km and the entire coast spans about 400 km.  The error was calculated as follows:  

𝛿𝑚𝑜𝑟𝑔

= √∑ (𝐴𝑖√(𝜌𝑖
2𝛿𝜌𝑖

2 ) + (𝑉𝑎𝑖
2𝛿𝑉𝑎𝑖

2 ) + (𝐹𝑜𝑟𝑔𝑖

2𝛿𝐹𝑜𝑟𝑔𝑖

2 ) + 2(𝜌𝑖𝑉𝑎𝑖
𝜎𝜌𝑖𝑉𝑎𝑖

+ 𝜌𝑖𝐹𝑜𝑟𝑔𝑖
𝜎𝜌𝑖𝐹𝑜𝑟𝑔𝑖

+ 𝐹𝑜𝑟𝑔𝑖
𝑉𝑎𝑖

𝜎𝐹𝑜𝑟𝑔𝑖
 𝑉𝑎𝑖

)

2

 

𝑖€𝐴 

 

Where 𝛿𝑚𝑜𝑟𝑔
 is the total interpolation error (MT/yr) for sediment organic mass accumulation 

along the coast, 𝛿𝜌𝑖
 is the estimated standard deviation of dry bulk density for each pixel (g/cm3), 

𝛿𝑉𝑎𝑖
 is the estimated standard deviation of vertical accretion rate for each pixel (cm/yr), and 𝛿𝐹𝑜𝑟𝑔𝑖

 

is the estimated standard deviation of fraction organic matter (-) for each pixel. Note that 

𝐹𝑜𝑟𝑔𝑖

2𝛿𝐹𝑜𝑟𝑔𝑖

2  is only used when calculating the organic sediment mass accumulation error. 

Associated covariance terms using 𝐹𝑜𝑟𝑔 are also only considered when calculating organic 

sediment mass error.  Ai is 1010 cm2, which is the area of each pixel. 𝜎 is the covariance number 

between two variables (Table 1).  

Sediment Volume Accumulation 

 Total sediment volume accumulation estimates were calculated since volume of sediment 

is what fills the accommodation space created by RSLR. In order to calculate an estimate for total 

(inorganic plus organic) sediment volume accumulated along the coast (𝑉𝑇), the following 

equation was used: 
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𝑉𝑇 = ∑ 𝑉𝑎𝑖
𝐴𝑖

𝑖€𝑝𝑖𝑥

 

Where 𝑚𝑇𝑖
is the total mass at pixel i (g/cm2yr) and 𝑉𝑇 is the total volume of sediment accumulated 

along the entire coast in km3/yr. For volume of organic sediment accumulated along the coast 

(𝑉𝑜𝑟𝑔; km3/yr), 𝐹𝑜𝑟𝑔𝑖
 is multiplied in as well, which is the fraction organic matter at pixel i (-): 

𝑉𝑜𝑟𝑔 = ∑ 𝑉𝑎𝑖
𝐴𝑖𝐹𝑜𝑟𝑔𝑖

𝑖€𝑝𝑖𝑥

 

The total inorganic volume accumulation rate (𝑉𝐼; km3/yr) is calculated as follows: 

𝑉𝐼 = 𝑉𝑇 − 𝑉𝑜𝑟𝑔 

The error (𝛿𝑣;
km3

yr
) associated with the total sediment volume accumulation is: 

𝛿𝑣 =  √∑ (𝐴𝑖𝑉𝑇
√(

𝛿𝑉𝑎𝑖

𝑉𝑎𝑖

)

2

)

2

𝑖€𝐴

 

Where 𝛿𝑣 is the error on the sediment mass accumulation rate (MT/yr).  

Trapping Efficiency 

 To compare 𝑚𝑇 to total sediment discharge of both the Mississippi River and Atchafalaya 

Rivers from the 2006-2016, the same time period covered by the accretion measurements, a 

combined sediment discharge from the rivers was calculated. Trapezoidal integration, which 

assumes linear change from one measurement to the next, of direct USGS measurements for 

suspended sediment concentrations (CSS) * discharge (Qw) over the 10 years allowed us to calculate 

an estimate of the amount of sediment delivered to the coast each year (Qs). The Mississippi River 

at Baton Rouge, LA (USGS Station: 07374000) has a record of Css from the 1970’s to 2016. The 

Atchafalaya River at Melville, LA (USGS Station: 07381495) has a record of Css from 1979-2016. 

The integration gives a total sediment load of 113 MT/yr over the 10-year period (Figure 5). This 
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is significantly smaller than the 205 MT/yr sediment load calculated by Blum and Roberts (2009)1 

for the period  following damming (~1970-2009) using the Mississippi River at Tarbert Landing, 

MS (USGS Station: 07295100), and the Atchafalaya River at Simmesport, LA (USGS Station: 

07381490).   
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Figure 5: Discharge (blue- m3/s) and suspended sediment concentration (orange- mg/L) data 

gathered from the USGS for the two main rivers, The Mississippi River (a) and the Atchafalaya 

River (b) that feed the Louisiana coast. Integrating discharge and suspended sediment 

concentration over the 10-year study period gives the sediment flux (green- MT/yr) over that 

period. The total sediment flux for both rivers combined is 113 MT/yr, which is used to calculate 

the trapping efficiency along the coast.  

a 

b 
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By determining the annual suspended sediment load to the coast over the past 10 years, a 

trapping efficiency can be directly calculated using the equation: 

𝐹𝑡𝑟𝑎𝑝 =
𝑚𝑇

𝑄𝑠
 

Where 𝐹𝑡𝑟𝑎𝑝 is total trapping efficiency (-), 𝑚𝑇 is total sediment mass accumulation rate along the 

coast (MT/yr), and 𝑄𝑠 is combined river sediment load (MT/yr). 𝑚𝑇  can be exchanged with 𝑚𝑅 to 

get an initial trapping efficiency for directly nourished parts of the coast. For the trapping 

efficiency of indirectly nourished areas, we exchange 𝑚𝑇  with 𝑚𝑂.  

The error of the trapping efficiency is only affected by the error on the total sediment mass 

accumulation rate, since we do not have an estimate of error on the sediment discharge from the 

rivers. The error is calculated as follows: 

𝛿𝑡𝑟𝑎𝑝 =  √(
𝛿𝑚𝑇

𝑚𝑇
)

2

𝐹𝑡𝑟𝑎𝑝 

Where 𝛿𝑡𝑟𝑎𝑝is the estimated error on the trapping efficiency (-).  

Sediment Deficit 

 Finally, a sediment deficit to the coast can be calculated by determining the amount of 

accommodation space created along the coast each year using the average Louisiana coastal 

subsidence rate3 and average SLR rate. The coastal subsidence rate used is 9 mm/yr based on the 

geostatistical analysis of CRMS data to produce estimates of subsidence at the sediment surface3. 

Eustatic SLR has been shown to be 3 mm/yr21. This results in a 12 mm/yr or 1.2 cm/yr RSLR rate. 

In order to have a total net loss of 0 cm2 of land, then: 

𝑚𝑁 = 𝐴𝑖 ∑ 𝜌𝑖𝑅𝑠𝑙𝑟𝑖

𝑖€𝐴
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where 𝑚𝑁 is mass of sediment needed (MT/yr) to fill the accommodation space created by RSLR 

each year. 𝑅𝑠𝑙𝑟𝑖
 is relative sea level rise rate at each pixel (cm/yr), and 𝐴𝑖  and is total land area of 

each pixel along the coast (cm2). 𝑅𝑠𝑙𝑟𝑖
 is assumed to be a constant 1.2 cm/yr.  

 The total error on the mass needed (MT/yr) is calculated as follows: 

𝛿𝑚𝑁
= √(∑ 𝐴𝑖

√(
𝛿𝜌𝑖

𝜌𝑖
)

2

+ (
𝛿𝑅𝑠𝑙𝑟𝑖

𝑅𝑠𝑙𝑟𝑖

)

2

𝑖€𝐴

)

2

 

Where 𝛿𝑚𝑁
 is the total error on the sediment mass needed (MT/yr) and 𝛿𝑅𝑠𝑙𝑟𝑖

is the error on the 

relative sea level rise rate, which is a constant 0.1 cm/yr3. 

This mass is then compared to the total mass of sediment trapped on the coast each year. 

Sediment mass deficit is given by: 

𝑚𝐷 = 𝑚𝑁 − 𝑚𝑇 

where 𝑚𝐷 is the sediment mass deficit in MT/yr. If negative, then there is a sediment mass surplus. 

The error on the total sediment mass deficit (𝛿𝑚𝐷
; 𝑀𝑇/𝑦𝑟) is given by: 

𝛿𝑚𝐷
=  √(𝛿𝑚𝑁

)
2

+ (𝛿𝑚𝑇
)

2
 

A fraction mass sediment deficit is given by: 

𝐹𝑚𝐷
= (

𝑚𝐷

𝑚𝑁
) 

where 𝐹𝑚𝐷  is the sediment deficit or surplus (-). The error on the fraction mass sediment deficit 

(𝛿𝐹𝑚𝐷
;  −) is given by: 

𝛿𝐹𝑚𝐷
=  √(

𝛿𝑚𝐷

𝑚𝐷
)

2

+ (
𝛿𝑚𝑁

𝑚𝑁
)

2

𝐹𝑚𝐷
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 Similarly, the sediment volume deficit and fraction volume deficit can also be calculated. 

The volume of sediment needed to fill the accommodation space created each year is given by:  

𝑉𝑁 = 𝑅𝑠𝑙𝑟𝐴 

where A is the area of the entire shape file (cm2) and Rslr is the constant relative sea level rise rate 

of 1.2 cm/yr. 𝑉𝑁 is the volume of sediment needed to fill the accommodation space in (km3/yr). 

The error associated on the volume needed is only dependent on the error of the relative sea level 

rise rate, which is 0.1 cm/yr for each pixel. The error on the volume of sediment needed is given 

by: 

𝛿𝑉𝑁 =  √(
𝛿𝑅𝑠𝑙𝑟

𝑅𝑠𝑙𝑟
)

2

𝑉𝑁 

This volume is then compared to the total volume of sediment trapped on the coast each 

year. Sediment volume deficit is then given by: 

𝑉𝐷 = 𝑉𝑁 − 𝑉𝑇 

where 𝑉𝐷 is the sediment volume deficit in km3/yr. If negative, then there is a sediment volume 

surplus. The error on the volume deficit (𝛿𝑉𝐷
; 𝑘𝑚3/𝑦𝑟) is given by: 

𝛿𝑉𝐷
=  √(𝛿𝑉𝑁

)
2

+ (𝛿𝑉𝑇
)

2
 

A fraction volume sediment deficit is given by: 

𝐹𝑉𝐷
= (

𝑉𝐷

𝑉𝑁
) 

where 𝐹𝑉𝐷  (-) is the fraction volume sediment deficit (+) or surplus (-). The associated error 

(𝛿𝐹𝑉𝐷
;  −) is given by: 

𝛿𝐹𝑉𝐷
=  √(

𝛿𝑉𝐷

𝑉𝐷
)

2

+ (
𝛿𝑉𝑁

𝑉𝑁
)

2

𝐹𝑉𝐷
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Results 

Sediment Accumulation 

Between 2006 and 2016, our geostatistical analysis estimates that about 82 ± 1.3 MT/yr of 

sediment is trapped in the marshes of the Mississippi Delta. Of this 82 MT/yr of sediment, 59 ± 

1.9 MT/yr was inorganic sediment and 23 ± 1.3 MT/yr was organic.  

Figure 6: The interpolated dry bulk density (g/cm3) and associated variance across the entire 

study area. The 24 cm cores taken before establishment of platforms were used to gather bulk 

densities. We assume the average bulk density of the 24 cm core is representative of accumulated 

sediment in the 10 years following. Average bulk densities vary and tend to be higher where 

riverine sedimentation dominates (i.e. ‘bird’s foot’). 
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Figure 7: The interpolated accretion rates (cm/yr) and associated variance across the entire study 

area. The 10-year average accretion rates for each of the 273 sites was used for interpolation with 

a 1 km2 grid. Generally, the average accretion rate across the coast is about 1.1 cm/yr. 
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Figure 8: This shows the interpolated organic fraction and associated variance across the entire 

study area. The 24 cm cores taken before establishment of platforms were used to measure organic 

fraction. We assume the average organic fraction of the 24 cm core is representative of 

accumulated sediment in the 10 years following. Average organic fractions vary and tend to be 

lower where riverine sedimentation dominates. 
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Figure 9: The total sediment accumulation along the coast (g/cm2yr) is calculated by multiplying 

the rasters of interpolated dry bulk density (fig. 6) and accretion rates (fig 7.). The top figure shows 

the rates along the coast and the red areas highlight the areas that are fed by the two main rivers 

(left box- Atchafalaya River, right box- Mississippi River). These areas tend to have higher 

accumulation rates than the rest of the coast. The bottom figure shows the associated variance of 

the accumulation rates. 

 

When the Mississippi Delta marshes are separated into regions with direct fluvial nourishment and 

regions with only indirect nourishment, we find that directly nourished regions accumulate 20 ± 

2.4  MT/yr inorganic and 6 ± 1.7 MT/yr organic sediment. Compared to the combined load of the 

Mississippi and Atchafalaya Rivers (113 MT/yr), this is a trapping efficiency of 18%. Indirectly 

nourished areas accumulate the remaining 39 ± 1.6 MT/yr, of which 17 ± 1.1 MT/yr is organic. If 

the fluvial input to the Gulf of Mexico is 69 MT/yr  (fluvial discharge minus inorganic 

accumulation in directly nourished areas), then the indirectly nourished areas trap about 32% of 

this. 
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Table 3: Sediment accumulation, sediment deficit, and trapping efficiency summary table. 

From 2006-2016, about 82 Mton of sediment accumulated along the coast each year. Current land 

area is about 22,000 km2. Assuming a relative sea level rise rate of 1.2 cm/yr, there was about a 3 

Mton/yr sediment mass surplus (or 3.5% mass surplus) along the Louisiana Coast. However, there 

was a sediment volume deficit of about 0.014 km3/yr (or about 5.4%). The breakdown between 

directly nourished areas and indirectly nourished areas and the relative mass and volume 

surplus/deficit for these areas are also shown. Negative sediment surplus numbers are indicative 

of a sediment deficit.  

 

 Inorganic (Mton/yr) Organic (Mton/yr) Total (Mton/yr) 

Sediment Mass 

Accumulation 

59 ± 1.9 23 ± 1.3 82 ± 1.3 

Directly Nourished 

Mass Accumulation 

20  ± 2.4 6  ± 1.7 26 ± 1.7 

Indirectly Nourished 

Mass Accumulation 

39 ± 1.6 17 ± 1.1 56 ± 1.1 

 Inorganic (km3/yr) Organic (km3/yr) Total (km3/yr) 

Sediment Volume 

Accumulation 

0.172 ± 0.276 0.077 ± 0.203 0.249 ± 0.187 

Directly Nourished 

Volume Accumulation 

0.041 ± 0.356 0.013 ± 0.261 0.054 ± 0.242 

Indirectly Nourished 

Volume Accumulation 

0.131 ± 0.224 0.064 ± 0.164 0.195 ± 0.153 

 

Total Area 

Sediment Mass 

Needed to Sustain 

Land Area 

79 ± 0.94 Mton/yr Sediment Volume 

Needed to Sustain 

Land Area 

0.263 ± 0.022 km3/yr 

Sediment Mass 

Surplus 

2.7 ± 1.6 Mton/yr Sediment Volume 

Surplus 

-0.014 ± 0.19 km3/yr 

Percent Sediment 

Mass Surplus 

3.5 ± 2.1% Percent Volume 

Surplus 

-5.4 ± 8.3%  

Trapping Efficiency  52 ± 1.6 %   

 

Directly Nourished Area 

Sediment Mass 

Needed to Sustain 

Land Area 

20 ± 1.3 Mton/yr Sediment Volume 

Needed to Sustain 

Land Area 

0.049 ± 0.004 km3/yr 

km3/yr 

Sediment Mass 

Surplus 

5.3 ± 2.2 Mton/yr Sediment Volume 

Surplus 

0.0051 ± 0.15 km3/yr  

Percent Sediment 

Mass Surplus 

26.5 ± 10.9% Percent Volume 

Surplus 

10.4 ± 500%  

Trapping Efficiency  18 ± 2.2 %   
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Table 3: Sediment accumulation, sediment deficit, and trapping efficiency summary table- 

Cont’d. 

 

Indirectly Nourished Area 

 Inorganic (Mton/yr) Organic (Mton/yr) Total (Mton/yr) 

Sediment Mass 

Needed to Sustain 

Land Area 

59 ± 0.88 Mton/yr Sediment Volume 

Needed to Sustain 

Land Area 

0.21 ± 0.018 km3/yr 

Sediment Mass 

Surplus 

-2.6 ± 1.4 Mton/yr Sediment Volume 

Surplus 

-0.019 ± 0.15 km3/yr 

Percent Sediment 

Mass Surplus 

-4.4 ± 2.4% Percent Volume 

Surplus 

-9.0 ± 72 %  

Trapping Efficiency   41± 1.7%   

 

Trapping Efficiency 

The combined fluvial (MR and AR) sediment discharge from 2006-2016 was about 113 

Mton/yr. Since the areas directly nourished by the rivers trapped about 20 MT of inorganic 

sediment per year, the directly nourished areas of sediment accumulation account for about 18% 

initial trapping efficiency on the delta top. The remaining 39 MT of inorganic sediment that 

accumulates in marshes each year is assumed to be delivered indirectly to the marshes, being 

delivered to the coast through tides or storms (continental shelf) or from somewhere else on the 

marsh platform. This sedimentation produces a total coastal marsh trapping efficiency of 52%. 

Sediment Deficit 

Sediment Deficits can be estimated by (a) comparing accumulation volume to 

accommodation volume generated by relative sea level rise over the marsh area, or by (b) 

comparing mass accumulation to the estimated mass required to fill the accommodation volume. 

Working volumetrically, the average accretion rate along the coast is 1.1 cm/yr. Since the predicted 

RSLR rate in Louisiana is 1.2 cm/yr throughout the study area, it is evident that there is not enough 

volume of sediment accumulating along the coast. In order to halt land loss completely, 0.26 ± 

0.022 km3/yr of sediment needs to be accumulated along the coast each year (land area ~ 22,000 
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km2). This results in a 0.014 ± 0.19 km3/yr sediment volume deficit or about 5.4% sediment volume 

deficit.  

However, comparing mass accumulation to mass needed, it becomes evident that there is 

a small surplus. The total mass needed is about 78.9 MT/yr and about 81.7 MT accumulated each 

year. This results in a mass surplus of about 2.7 MT/yr or 3.5% mass surplus along the coast, which 

supports the recent insight that land loss is finally beginning to slow along the coast.  

Further analysis provides insight into differences between directly nourished and indirectly 

nourished wetlands. In the directly nourished areas, there is a volume and mass surplus (Table 2). 

These areas trap about 5 MT (~26.5%) more sediment than they need each year, and the 

accumulation results in a surplus volume of 0.0051 km3 (~10%) each year.  

However, the indirectly nourished wetlands, which tend to receive less inorganic sediment 

more organic sediment, do not thrive like the directly nourished areas do. These areas have about 

a 2.6 MT/yr sediment mass deficit, which is about a 4.4% deficit. Furthermore, they have about a 

0.019 km3/yr volume deficit, which is about an 8.9% volume deficit.   

Discussion 

A New Estimate of Sediment Deficit 

 The CRMS dataset provides the data needed to calculate the first large-scale, field-based 

estimate of sediment accumulation along the Louisiana coast over the past decade. We show that 

between 2006 and 2016, there is about enough sediment mass and volume accumulating in coastal 

marshes counteract relative sea level rise and sustain the land area.  

These results contrast with the previous studies of sediment deficit along the coast by Blum 

and Roberts (2009). The difference in estimates is due to differences in subsidence rates bulk 

density, as well as the neglect of the organic fraction. The subsidence rates calculated using the 
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CRMS data by Nienhuis (2017) show subsidence rates higher than the 1-8 mm/yr used by Blum 

and Roberts (2009). Therefore, the relative sea level rise of 12 mm/yr used in this study is higher 

than the relative sea level rise rate used by Blum and Roberts (2009), which ranged from 4 mm/yr 

- 12 mm/yr. Even with the higher RSLR rate, and subsequently more accommodation space to fill, 

we still show a smaller sediment deficit.  

The shallow cores at the CRMS stations had mean and maximum dry bulk densities of 

coastal marsh sediment of about 0.2 and 0.8 g/cm3, respectively. These densities indicate marsh 

sediment porosities between 70-90%, assuming that the mineral sediment had a density of 2.65 

g/cm3. In contrast, Blum and Roberts (2009) assumed a dry bulk density of 1.5 g/cm3, which 

corresponds to a 45% porosity. Thus, the dry bulk densities directly measured along the coast are 

much smaller because the sediment has more porosity than previously assumed. This is likely the 

main reason for the difference in sediment deficit estimations. 

Subsidence on the Mississippi Delta is primarily due to shallow sediment compaction22, 

meaning that bulk density and subsidence rates are highly coupled properties that both vary with 

depth. In order to accurately calculate the mass flux due to subsidence, one must know the 

subsidence rate and the bulk density at a given depth. The CRMS data is particularly valuable 

because it provides measurements of subsidence and bulk density at the same horizon (the 

sediment surface).  Therefore, the high subsidence rates at the sediment surface are offset by the 

small bulk densities found at the same locations. 

Finally, Blum and Roberts (2009), neglected organic accumulation in the deposit 

completely for simplicity. Although inorganic sediment accounts for most of the sediment 

accumulation along the coast, organic sediment production by coastal marsh plants accounts for 

about 28% of all sediment mass accumulation. Because the highly organic rich marsh sediment 
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tends to have lower bulk densities than inorganic sediment, it also has more pore space. Therefore, 

organic rich deposits (high fraction organic matter) take up more space than deposits with lower 

amounts of organic matter (i.e. have more volume). The volume of organic sediment accounts for 

29% of the total volume of sediment accumulated. If we neglect organic accumulation, our results 

suggest that the small sediment mass surplus would turn into a significant mass deficit of 20 MT/yr 

(25%), in line with previous estimates. Thus, the mass and/or volume of the organic deposits 

should not be neglected when calculating sediment deficits in coastal marshes.  

While there is enough mass of sediment being trapped along the coast every year to 

theoretically fill the accommodation space (3.5% mass surplus), because of sediment properties, 

enough volume does not accumulate each year. The volume depends on the accretion rates, which 

are impacted by the amount of sediment entering the marsh platform, as well as the porosity the 

sediment is deposited with. If the sediment was deposited with more porosity (i.e. had lower bulk 

density), then there would potentially be enough volume to fill the accommodation space created. 

Although there is not enough volume to fill the accommodation space, there is only a 5.4% volume 

sediment deficit. This sediment volume deficit could be mitigated in the future with sediment 

diversions that would promote deposition of the 30% of Mississippi River sediment that currently 

does not reach marshes.  

Most of the marshes in the western portion of the coast (Chenier Plain) are indirectly 

nourished, as there is no major river feeding this portion of the coast. When dividing up the land 

area into directly nourished vs. indirectly nourished areas, it becomes evident that the directly 

nourished areas have enough sediment (mass and volume) to keep pace with the RSLR rates they 

are experiencing; however, the indirectly nourished areas experience a 9% sediment volume 

deficit.  Thus, these areas cannot keep pace with RSLR, even with the higher organic contribution 
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observed in these areas. While they do not keep pace with RSLR, the sediment deficit is not as 

large as previously thought. However, these areas should be the focus of future restoration plans. 

On top of the different assumptions, the smaller total sediment deficit may also be in part 

due to additional land loss from the time of the last sediment deficit study1. Further, these new 

estimates of the Mississippi River sediment accumulation and deficit characterized deposition over 

about 22,000 km2 of marsh. The size of the shapefile used to conduct the study may alter results 

slightly, though our shapefile is representative of coastal marshlands, as it spans the entire area of 

known CRMS sites.   

A Field Based Estimate of Trapping Efficiency 

By calculating a sediment budget in deltaic coastal marshes using the Mississippi and 

Atchafalaya River discharge and suspended sediment concentrations, we show that the coast traps 

about 52% of the inorganic sediment being delivered. Our calculated trapping efficiency is slightly 

greater than the 40% trapping efficiency assumed in Blum and Roberts (2009)1. This higher 

trapping efficiency is likely seen because over the 10-year period of our study the sediment 

supplies of the Mississippi and Atchafalaya rivers (113 MT/yr) were significantly smaller than the 

values used by Blum and Roberts, 2009 (205 MT/yr). The reduced sediment discharge is 

potentially due to natural variability of fluvial sediment transport or may be a part of the trend of 

reduced sediment transport since 197023. If river sediment discharges were the 205 MT/yr used by 

Blum and Roberts (2009)1, than the trapping efficiency would be about 40%.  

The loss of delta marsh in the 20th century has been attributed to several causes, but the 

separation of the river from marsh reducing sediment supply is among the primary causes24. Just 

18% of the inorganic sediment is trapped in areas that are directly nourished, while 41% of the 

sediment transported indirectly to coastal marshes is trapped. The difference in trapping efficiency 
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is highly affected by the amount of sediment entering the two systems. The directly nourished 

areas receive the entire riverine sediment input and the marshes receive only the sediment input 

not trapped in the directly nourished areas. Although coastal marshes that do not receive direct 

sediment have higher trapping efficiencies than areas with direct sediment input, they do not trap 

enough sediment to sustain their current land area.  

Limitations of this study 

The CRMS network of sites were designed to monitor sedimentary accumulation on marsh 

platforms. This study quantifies the sediment balance in these areas. However, there are also 

several types of erosion and deposition which are not characterized in this study, including marsh 

edge erosion and subaqueous deposition. However, we estimate these processes have only a minor 

effect on the overall delta mass balance.   

Marsh edge erosion at the edges of ponds, and result in lateral changes in marsh extent.  

CRMS stations measure vertical accretion change to marsh platforms and are not designed to 

measure any lateral erosion to marsh edges. However, marsh edge erosion likely did not play a 

large role during our study period, as marsh edge erosion generally happens due to large breaking 

waves, typical of hurricanes. Over 34 years, there has only been 250 km2 of marsh erosion 

attributed directly to marsh edge erosion25. If the thickness of this marsh erosion is 2 m26 and the 

average bulk density of marsh sediment is 0.3 g/cm3, then this results in about 4 MT/yr of marsh 

edge erosion over the 34-year period.  Marsh sediment that experiences gradual threats, like RSLR, 

is generally able to handle these stresses and marsh edge erosion is not a factor in these scenarios11. 

During the 10-year study period, there were two minor hurricanes along the Louisiana coast, 

Hurricane Gustav and Hurricane Ike. Hurricane Gustav is shown to have caused only about 0.9% 

of land loss along the coast; however, recovery of marshlands has been shown to be slowly erasing 
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the loss caused by this hurricane27. Hurricane Ike was also a category 2 storm but mostly impacted 

Texas, so we assume the effects of this storm are similar to the effects of Ike, and the coast is likely 

recovering from this storm as well. The effects are much less severe than the land loss of some 

500 km2 caused by Hurricane Katrina, which occurred before deployment of CRMS stations, so 

erosion along marsh edges is assumed to not significantly alter our results.  

The CRMS sites also do not measure delta front deposition, which is significant in parts of 

the ‘birds foot’ of the Mississippi Delta, as well as the Wax Lake and Atchafalaya Deltas in 

Atchafalaya Bay. There has been about 3 m of sediment deposited over about 100 km2 on the Wax 

Lake Delta since 1970. Assuming a bulk density of 0.65 g/cm3 (average of bulk density of core 0-

24 cm depth at CRMS station 0479- Wax Lake Delta), this results in about 4 MT/yr of sediment 

since formation. The deposition on the Atchafalaya Delta and the ‘birds foot’ part of the 

Mississippi River Delta is assumed to be of the same order of magnitude, so these three areas 

combined account for around an extra 12 MT of sediment mass accumulation along the coast each 

year.  

When monitoring marsh accretion, it is important to monitor marsh top erosion as well, so 

as to not bias mass balance estimations28. In most cases, accumulation time series at CRMS sites 

showed short periods of erosion within the long-term depositional signal. Hence, we consider the 

deposition rates to be characteristic of decadal scale marsh stability. However, we do not rule out 

the possibility that some CRMS sites were neglected because erosion over the same time scale did 

not allow an accumulation record to persist. We assume that this erosion is counter-balanced by 

deposition in the subaqueous delta regions. Therefore, excluding erosion and deposition should 

not significantly alter our results.  
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Implications for coastal restoration 

Recent management plans have been aimed at increasing the sediment supply in order to 

decrease the loss of lands along the coast. Direct nourishment of wetlands, typically due to riverine 

sediment input, allows coastal lands to keep pace with RSLR24. Indirect nourishment of marshes, 

areas that do not have a significant source of riverine input, depend on both inorganic and organic 

contributions to sustain the land area29. While this helps wetlands keep pace with RSLR, if rates 

of RSLR are too high, wetlands may still drown8. The western portion (the Chenier Plain) of the 

coast has the highest subsidence rates3, as well as the lowest accretion rates2, so this should be the 

target area for future restoration strategies. 

The Atchafalaya Basin is currently keeping pace with RSLR, which shows the promise for 

rerouting of riverine sediment to other part of the coast. While river diversions may be a good 

management strategy to increase sediment supply to areas not currently keeping pace with RSLR, 

other restoration strategies should be explored too, as the western portion of the coast, and other 

areas not receiving direct sediment input, are not as doomed as previously thought.  

Since the trapping efficiency is only about 50%, management strategies should focus on 

ways of trapping more of this sediment along the coast. Because of this trapping efficiency and 

the low volume deficit, it is evident that there is not a sediment deficit in the sediment budget, 

which gives hope for restoring and protecting these lands.  

The sediment deficit measurements presented here are based of a dataset gathered over a 

decade that was remarkable in several ways. 1) few hurricanes. 2) low river sed discharge. The 

likely do not represent the sediment of previous decades, were large areas of marsh were drowned. 

The behavior of deltas is very timescale dependent. Hence, we reason that measurements from the 
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next decade may bear some resemblance to the ones presented here. However, they should not be 

used as a predictive tool for longer timescales.  

Conclusion 

There is enough sediment transported to the coast to halt land loss along the Louisiana 

Coast. The small sediment volume deficit observed along the coast is due to the low marsh bulk 

density measured at the marsh surface and significant accumulation rates of organic material. The 

deficit is due, in part, to the trapping efficiency of these coastal wetlands. Half of all the sediment 

delivered by the rivers is trapped in the wetlands. Further, wetlands are also great producers of 

organic sediment, which enhances their ability to keep pace with RSLR. Even though the RSLR 

rate along the Louisiana Coast is among the highest in the U.S., the wetlands are doing a 

significantly better job at keeping pace with RSLR than previously thought.   

The directly nourished areas have a significant sediment surplus in terms of mass and 

volume and are accreting at rates higher than RSLR. However, the areas that are indirectly 

nourished and not fed by a major river are more susceptible to degradation caused by RSLR. 

Although a sediment deficit is observed in the indirectly nourished areas, surprisingly, they are not 

as sediment starved as previously thought. Even though they are not nourished directly by a river, 

they manage to trap almost enough sediment to keep pace with a 1.2 cm/yr RSLR. However, these 

areas should be of primary focus in future restoration and management plans. Future projections 

of increased sea level rise rates, as well as spatially distributed subsidence rates can shed even 

more light on the vulnerability of different regions along the coast.  

Overall, since there is enough sediment to sustain the land area, future management should 

focus on increasing the deltaic and coastal sediment trapping efficiency, as well as rerouting more 

inorganic sediment to areas that cannot currently keep pace with RSLR.  



33 

 

References  

1.  Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient 

sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009). 

2.  Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s 

coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. Lond. 8, 14792 

(2017). 

3.  Nienhuis, J. H. A New Subsidence Map for Coastal Louisiana. GSA Today (2017). 

doi:10.1130/GSATG337GW 

4.  Couvillion, B. et al. Land Area Change in Coastal Louisiana from 1932 to 2010. Land 

Area Change Coast. La. 1932 2010 (2011). 

5.  Couvillion, B. R., Beck, H., Schoolmaster, D. & Fischer, M. Land area change in coastal 

Louisiana (1932 to 2016). (U.S. Geological Survey, 2017). doi:10.3133/sim3381 

6.  Blum, M. D. & Roberts, H. H. The Mississippi Delta Region: Past, Present, and Future. 

Annu. Rev. Earth Planet. Sci. 40, 655–683 (2012). 

7.  Shepard, C. C., Crain, C. M. & Beck, M. W. The Protective Role of Coastal Marshes: A 

Systematic Review and Meta-analysis. PLOS ONE 6, e27374 (2011). 

8.  Cahoon, D. R. et al. Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland 

Elevation Trends and Process Controls. in Wetlands and Natural Resource Management (eds. 

Verhoeven, J. T. A., Beltman, B., Bobbink, R. & Whigham, D. F.) 190, 271–292 (Springer 

Berlin Heidelberg, 2006). 

9.  Gramling, R. & Hagelman, R. A Working Coast: People in the Louisiana Wetlands. J. 

Coast. Res. 112–133 (2005). 

10.  Colten, C. E. Environmental Management in Coastal Louisiana: A Historical Review. J. 

Coast. Res. 699–711 (2016). doi:10.2112/JCOASTRES-D-16-00008.1 

11.  Feagin, R. A. et al. Does vegetation prevent wave erosion of salt marsh edges? Proc. Natl. 

Acad. Sci. 106, 10109–10113 (2009). 

12. Howes, N. C. et al. Hurricane-induced failure of low salinity wetlands. Proc. Natl. Acad. 

Sci. 107, 14014–14019 (2010). 

13. Bentley, S. J., Blum, M. D., Maloney, J., Pond, L. & Paulsell, R. The Mississippi River 

source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, 

Miocene to Anthropocene. Earth-Sci. Rev. 153, 139–174 (2016). 

14. Jones, C. E. et al. Anthropogenic and geologic influences on subsidence in the vicinity of 

New Orleans, Louisiana: Subsidence of New Orleans. J. Geophys. Res. Solid Earth 121, 

3867–3887 (2016). 



34 

 

15. Twilley, R. R. et al. Co-evolution of wetland landscapes, flooding, and human settlement 

in the Mississippi River Delta Plain. Sustain. Sci. 11, 711–731 (2016). 

16. Kosters, E. C., Chmura, G. L. & Bailey, A. Sedimentary and botanical factors influencing 

peat accumulation in the Mississippi Delta. J. Geol. Soc. 144, 423–434 (1987). 

17. Folse, T. M. et al. A Standard Operating Procedures Manual for the Coastwide Reference 

Monitoring System-Wetlands: Methods for Site Establishment, Data Collection, and Quality 

Assurance/Quality Control. 228 (Louisiana Coastal Protection and Restoration Authority, 

2008). 

18. automap package | R Documentation. Available at: 

https://www.rdocumentation.org/packages/automap/versions/1.0-14. (Accessed: 15th 

February 2018) 

19. krige function | R Documentation. Available at: 

https://www.rdocumentation.org/packages/gstat/versions/1.1-5/topics/krige. (Accessed: 15th 

February 2018) 

20. Allison, M. A. et al. A water and sediment budget for the lower Mississippi–Atchafalaya 

River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal 

restoration in Louisiana. J. Hydrol. 432–433, 84–97 (2012). 

21. Cazenave, A. & Llovel, W. Contemporary Sea Level Rise. Annu. Rev. Mar. Sci. 2, 145–

173 (2010). 

22. Törnqvist, T. E. et al. Mississippi Delta subsidence primarily caused by compaction of 

Holocene strata. Nat. Geosci. 1, 173–176 (2008). 

23. Kemp, G. P., Day, J. W., Rogers, J. D., Giosan, L. & Peyronnin, N. Enhancing mud 

supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing 

and coastal restoration. Estuar. Coast. Shelf Sci. 183, 304–313 (2016). 

24. Kearney, M. S., Riter, J. C. A. & Turner, R. E. Freshwater river diversions for marsh 

restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area. 

Geophys. Res. Lett. 38, L16405 (2011). 

25. Ortiz, A. C., Roy, S. & Edmonds, D. A. Land loss by pond expansion on the Mississippi 

River Delta Plain. Geophys. Res. Lett. 44, 2017GL073079 (2017). 

26. Wilson, C. & Allison, M. An equilibrium profile model for retreating marsh shorelines in 

southeast Louisiana. Estuar. Coast. Shelf Sci. - ESTUAR COAST SHELF SCI 80, 483–494 

(2008). 

27. Land loss due to recent hurricanes in coastal Louisiana, U.S.A. Available at: 

https://pubs.er.usgs.gov/publication/70047128. (Accessed: 25th February 2018) 



35 

 

28. Smith, J. E., Bentley, S. J., Snedden, G. A. & White, C. What Role do Hurricanes Play in 

Sediment Delivery to Subsiding River Deltas? Sci. Rep. 5, (2015). 

29. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. 

RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL. Ecology 83, 2869–

2877 (2002). 

  



36 

 

Appendix A- Variables 

𝜌𝑖 − 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (
𝑔

𝑐𝑚3
) 

𝑉𝑎𝑖
− 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (

𝑐𝑚

𝑦𝑟
) 

𝐹𝑜𝑟𝑔𝑖
− 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (−) 

𝐴𝑖 − 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑖𝑥𝑒𝑙 −  1 𝑘𝑚2 

𝑚𝑇 − 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 (
𝑀𝑇

𝑦
) 

𝑚𝑜𝑟𝑔 − 𝑡𝑜𝑡𝑎𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 (
𝑀𝑇

𝑦𝑟
) 

𝑚𝐼 − 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 (
𝑀𝑇

𝑦𝑟
) 

𝛿𝜌𝑖
− 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (

𝑔

𝑐𝑚3
) 

𝛿𝑉𝑎𝑖
− 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (

𝑐𝑚

𝑦𝑟
) 

𝛿𝐹𝑜𝑟𝑔𝑖
− 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (−)  

𝜎𝜌𝑖𝑉𝑎𝑖 
− 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 

𝜎𝜌𝑖𝐹𝑜𝑟𝑔𝑖
− 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑛𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 

𝜎𝐹𝑜𝑟𝑔𝑖
𝑉𝑎𝑖

− 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 𝑎𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖  

𝛿𝑚 − 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 (
𝑀𝑇

𝑦𝑟
) 

𝑉𝑇 − 𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑘𝑚3

𝑦𝑟
) 

𝑉𝑜𝑟𝑔 − 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑟𝑎𝑡𝑒 (
𝑘𝑚3

𝑦𝑟
) 

𝑉𝐼 − 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑟𝑎𝑡𝑒 (
𝑘𝑚3

𝑦𝑟
) 

𝛿𝑣 − 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑘𝑚3

𝑦𝑟
) 
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𝑄𝑠 − 𝑟𝑖𝑣𝑒𝑟𝑖𝑛𝑒 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (
𝑀𝑇

𝑦𝑟
) 

𝐹𝑡𝑟𝑎𝑝 − 𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (−) 

𝛿𝑡𝑟𝑎𝑝 − 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (−) 

𝑅𝑠𝑙𝑟𝑖
− 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑟𝑖𝑠𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (

𝑐𝑚

𝑦𝑟
) 

𝛿𝑅𝑠𝑙𝑟𝑖
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑟𝑖𝑠𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖 (0.1

𝑐𝑚

𝑦𝑟
) 

𝑚𝑁 − 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑡𝑎𝑖𝑛 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 (
𝑀𝑇

𝑦𝑟
) 

𝛿𝑚𝑁
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑡𝑎𝑖𝑛 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 (

𝑀𝑇

𝑦𝑟
) 

𝑚𝐷 − 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (
𝑀𝑇

𝑦𝑟
) 

𝛿𝑚𝐷
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (

𝑀𝑇

𝑦𝑟
) 

𝐹𝑚𝐷
− 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (−) 

𝛿𝐹𝑚𝐷
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (−) 

𝑉𝑁 − 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑡𝑎𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 (
𝑘𝑚3

𝑦𝑟
) 

𝛿𝑉𝑁
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑡𝑎𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 (

𝑘𝑚3

𝑦𝑟
) 

𝑉𝐷 − 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (
𝑘𝑚3

𝑦𝑟
) 

𝛿𝑉𝐷
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (

𝑘𝑚3

𝑦𝑟
) 

𝐹𝑉𝐷
− 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (−) 

𝛿𝐹𝑉𝐷
− 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 (−) 
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Appendix B- Interpolation Code 

CRMS Universal Kriging- Sediment Accumulation along the Louisiana Coast 

Introduction 

#Read Shape Polygon 

coast <- readOGR("C:/Users/kmsanks/Documents/Research/Kriging/UKrig","Vegetation") 

## Warning in ogrInfo(dsn = dsn, layer = layer, encoding = encoding, use_iconv 

## = use_iconv, : ogrInfo: C:/Users/kmsanks/Documents/Research/Kriging/UKrig/ 

## Vegetation.dbf not found 

## OGR data source with driver: ESRI Shapefile  

## Source: "C:/Users/kmsanks/Documents/Research/Kriging/UKrig", layer: "Vegetation" 

## with 86 features 

## It has 0 fields 

#Project into UTM Zone 15N 

LC <- spTransform(coast, CRS("+proj=utm +north +zone=15 +datum=WGS84"))  

 

#Read in the Spatial Data 

Delta_Data <- read.csv(file="CRMS_Data.csv", header=TRUE, sep=",") 

#Summary of data 

head(Delta_Data) 

##   Site Longitude Latitude Accretion     BulkD OrganicContent   XCoord 

## 1  174  -89.7630  29.3963      8.37 0.2983333     0.20818889 814159.1 

## 2  302  -90.9170  29.1478      5.08 0.5227778     0.09387222 702618.9 

## 3  156  -89.1667  29.1639      4.20 0.7588889     0.07860000 872918.8 

## 4  479  -91.4480  29.5269      3.81 0.6533333     0.07109444 650398.9 

## 5  272  -89.6980  29.4180      3.17 0.2911111     0.23337778 820407.0 

## 6  386  -90.3543  29.4325      2.93 0.1300000     0.56469444 756663.8 

##    YCoord      mult 

## 1 3256252 2.4970500 

## 2 3226158 2.6557111 

## 3 3232234 3.1873333 

## 4 3267363 2.4892000 

## 5 3258835 0.9228222 

## 6 3258818 0.3809000 

#Convert this basic data frame into a spatial points data frame 

coordinates(Delta_Data) = ~XCoord + YCoord #UTM vs. lat/long which are in degrees N 

 

#Plot the CRMS points on the land polygon 

plot(LC, main="273 CRMS Stations on Coast Polygon") 

plot(Delta_Data, pch=20, add=TRUE) 
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Figure 1: The 273 CRMS Stations used for interpolation are shown on the Louisiana coastal 

land polygon used to mask the interpolation. 

 

Data 

LA.Spatial <- read.csv("CRMS_Data.csv", header = T) 

head(LA.Spatial) 

##   Site Longitude Latitude Accretion     BulkD OrganicContent   XCoord 

## 1  174  -89.7630  29.3963      8.37 0.2983333     0.20818889 814159.1 

## 2  302  -90.9170  29.1478      5.08 0.5227778     0.09387222 702618.9 

## 3  156  -89.1667  29.1639      4.20 0.7588889     0.07860000 872918.8 

## 4  479  -91.4480  29.5269      3.81 0.6533333     0.07109444 650398.9 

## 5  272  -89.6980  29.4180      3.17 0.2911111     0.23337778 820407.0 

## 6  386  -90.3543  29.4325      2.93 0.1300000     0.56469444 756663.8 

##    YCoord      mult 

## 1 3256252 2.4970500 

## 2 3226158 2.6557111 

## 3 3232234 3.1873333 

## 4 3267363 2.4892000 

## 5 3258835 0.9228222 

## 6 3258818 0.3809000 

LA.data <- as.data.frame(LA.Spatial) 

#Create a geodata frame for bulk density 

#Use geoR to convert data into geodata 

bulkd.geodata <- as.geodata(LA.Spatial, coords.col=7:8, data.col=5) 

coordinates(LA.Spatial) <- ~XCoord + YCoord 



40 

 

Bulk Density 

Trend Surface Model 

tsm <- lm(BulkD ~ I(XCoord^2) + I(XCoord*YCoord), data=LA.Spatial) 

summary(tsm) 

##  

## Call: 

## lm(formula = BulkD ~ I(XCoord^2) + I(XCoord * YCoord), data = LA.Spatial) 

##  

## Residuals: 

##      Min       1Q   Median       3Q      Max  

## -0.25635 -0.12552 -0.04349  0.07607  0.79096  

##  

## Coefficients: 

##                      Estimate Std. Error t value Pr(>|t|)   

## (Intercept)         7.316e-01  2.987e-01   2.450   0.0149 * 

## I(XCoord^2)         1.821e-12  7.185e-13   2.534   0.0118 * 

## I(XCoord * YCoord) -5.837e-13  2.860e-13  -2.041   0.0423 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 0.1867 on 270 degrees of freedom 

## Multiple R-squared:  0.1099, Adjusted R-squared:  0.1034  

## F-statistic: 16.68 on 2 and 270 DF,  p-value: 1.483e-07 

x.range <- as.integer(c(400000.0, 910000.0)) 

y.range <- as.integer(c(3195000.0, 3370000.0)) 

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1000), y=seq(from=y.range[1], t

o=y.range[2], by=1000)) 

coordinates(grd) <- ~x + y 

gridded(grd) <- TRUE 

ras <- raster(grd) 

LA.grd <- as(ras, "SpatialGrid") 

LA.df <- data.frame(LA.grd) 

names(LA.df) <- c("XCoord", "YCoord") 

LA.grd$tsm.p <- predict(tsm, LA.df) 

spplot(LA.grd, zcol="tsm.p", scales=list(draw=T),   main="BulK Density Estimates from Trend 

Surface Mo 
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Figure 2: Bulk density estimates (g/cm^3) shown along the interpolation grid using the trend 

surface model. 

tsm.BD.v <- variogram(resid(tsm) ~1, LA.Spatial) 

tsm.BD.mod <- fit.variogram(tsm.BD.v, vgm(0.045, "Exp", 150000, 0.02)) 

plot(tsm.BD.v, model=tsm.BD.mod, main="Bulk Density TSM Residuals") 

 

Figure 3: Semivariogram created from trend surface model bulk density residuals (g/cm^3). 
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Results 

#Min Bulk D with Spherical Distance Weights and Spatial Trend 

LA.grd$XCoord <- LA.df$XCoord 

LA.grd$YCoord <- LA.df$YCoord 

#LA.grd$ELEV_M <- countries_grd$Alt 

bd.uk <- krige(BulkD~1, locations=LA.Spatial, LA.grd, model=tsm.BD.mod) 

## [using ordinary kriging] 

bd.uk <- brick(bd.uk) 

bd.uk <- mask(bd.uk, LC) 

names(bd.uk) <- c('Bulk Density Prediction', 'Variance') 

spplot(bd.uk, xlim=c(400000,900000))#,scales=list(draw=T)) 

 

Figure 4: The masked interpolation of bulk density (g/cm^3) and associated variance. 

Accretion 

Trend Surface Model 

tsm_acc <- lm(Accretion ~ I(XCoord^2) + I(XCoord*YCoord), data=LA.Spatial) 

summary(tsm_acc) 

##  

## Call: 

## lm(formula = Accretion ~ I(XCoord^2) + I(XCoord * YCoord), data = LA.Spatial) 
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##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -1.0822 -0.3794 -0.0921  0.2138  6.8888  

##  

## Coefficients: 

##                      Estimate Std. Error t value Pr(>|t|)   

## (Intercept)         1.433e+00  1.157e+00   1.239    0.216   

## I(XCoord^2)         4.721e-12  2.783e-12   1.696    0.091 . 

## I(XCoord * YCoord) -1.162e-12  1.108e-12  -1.049    0.295   

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 0.7233 on 270 degrees of freedom 

## Multiple R-squared:  0.1567, Adjusted R-squared:  0.1504  

## F-statistic: 25.08 on 2 and 270 DF,  p-value: 1.025e-10 

x.range <- as.integer(c(400000.0, 910000.0)) 

y.range <- as.integer(c(3195000.0, 3370000.0)) 

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1000), y=seq(from=y.range[1], t

o=y.range[2], by=1000)) 

coordinates(grd) <- ~x + y 

gridded(grd) <- TRUE 

ras <- raster(grd) 

LA.grd <- as(ras, "SpatialGrid") 

LA.df <- data.frame(LA.grd) 

names(LA.df) <- c("XCoord", "YCoord") 

LA.grd$tsm.p <- predict(tsm_acc, LA.df) 

spplot(LA.grd, zcol="tsm.p", scales=list(draw=T),  

       main="Accretion Estimates from Trend Surface Model") 

 

Figure 5: Accretion rate estimates (cm/yr) shown along the interpolation grid using the trend 

surface model. 
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tsm.acc.v <- variogram(resid(tsm_acc) ~1, LA.Spatial) 

tsm.acc.mod <- fit.variogram(tsm.acc.v, vgm(NA, "Exp", NA, NA)) 

## Warning in fit.variogram(tsm.acc.v, vgm(NA, "Exp", NA, NA)): No convergence 

## after 200 iterations: try different initial values? 

plot(tsm.acc.v, model=tsm.acc.mod, main="Accretion TSM Residuals") 

 

Figure 6: Semivariogram created from trend surface model accretion rate residuals (cm/yr). 

Results 

#Min Bulk D with Spherical Distance Weights and Spatial Trend 

LA.grd$XCoord <- LA.df$XCoord 

LA.grd$YCoord <- LA.df$YCoord 

#LA.grd$ELEV_M <- countries_grd$Alt 

acc.uk <- krige(Accretion~1, locations=LA.Spatial, LA.grd, model=tsm.acc.mod) 

## [using ordinary kriging] 

acc.uk <- brick(acc.uk) 

acc.uk <- mask(acc.uk, LC) 

names(acc.uk) <- c('Accretion Prediction', 'Variance') 

spplot(acc.uk, xlim=c(400000,900000))#,scales=list(draw=T)) 



45 

 

 

Figure 7: The masked interpolation of accretion rates (cm/yr) and associated variance. 

Organic Fraction 

Trend Surface Model 

tsm_org <- lm(OrganicContent ~ I(XCoord^2) + I(XCoord*YCoord), data=LA.Spatial) 

summary(tsm_org) 

##  

## Call: 

## lm(formula = OrganicContent ~ I(XCoord^2) + I(XCoord * YCoord),  

##     data = LA.Spatial) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -0.2953 -0.1194 -0.0286  0.1092  0.5108  

##  

## Coefficients: 

##                      Estimate Std. Error t value Pr(>|t|)   

## (Intercept)         1.204e-02  2.627e-01   0.046   0.9635   

## I(XCoord^2)        -1.541e-12  6.321e-13  -2.438   0.0154 * 

## I(XCoord * YCoord)  4.701e-13  2.516e-13   1.868   0.0628 . 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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##  

## Residual standard error: 0.1643 on 270 degrees of freedom 

## Multiple R-squared:  0.1349, Adjusted R-squared:  0.1285  

## F-statistic: 21.05 on 2 and 270 DF,  p-value: 3.208e-09 

x.range <- as.integer(c(400000.0, 910000.0)) 

y.range <- as.integer(c(3195000.0, 3370000.0)) 

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1000), y=seq(from=y.range[1], t

o=y.range[2], by=1000)) 

coordinates(grd) <- ~x + y 

gridded(grd) <- TRUE 

ras <- raster(grd) 

LA.grd <- as(ras, "SpatialGrid") 

LA.df <- data.frame(LA.grd) 

names(LA.df) <- c("XCoord", "YCoord") 

LA.grd$tsm.p <- predict(tsm_org, LA.df) 

spplot(LA.grd, zcol="tsm.p", scales=list(draw=T),  

       main="Organic Fraction Estimates from Trend Surface Model") 

 

Figure 8: Organic fraction estimates (-) shown along the interpolation grid using the trend 

surface model. 

tsm.org.v <- variogram(resid(tsm_org) ~1, LA.Spatial) 

tsm.org.mod <- fit.variogram(tsm.org.v, vgm(NA, "Exp", NA, NA)) 

plot(tsm.org.v, model=tsm.org.mod, main="Organic Fraction TSM Residuals") 



47 

 

 

Figure 9: Semivariogram created from trend surface model organic fraction residuals (-). 

Results 

#Min Organic with Exponential Distance Weights and Spatial Trend 

LA.grd$XCoord <- LA.df$XCoord 

LA.grd$YCoord <- LA.df$YCoord 

org.uk <- krige(OrganicContent~1, locations=LA.Spatial, LA.grd, model=tsm.org.mod) 

## [using ordinary kriging] 

org.uk <- brick(org.uk) 

org.uk <- mask(org.uk, LC) 

names(org.uk) <- c('Organic Fraction Prediction', 'Variance') 

spplot(org.uk, xlim=c(400000,900000))#,scales=list(draw=T)) 
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Figure 10: The masked interpolation of organinc fraction (-) and associated variance. 

#Create raster 

writeRaster(bd.uk, filename="bulkdensityuk.tif", format="GTiff", overwrite=TRUE) 

bd.uk.df <- as.data.frame(bd.uk) 

write.csv(bd.uk.df, "bd_var_df") 

bd.raster <- raster("bulkdensityuk.tif") 

#plot(bd.raster, main = "Interpolated Organic Fraction across Coast",xlab = "UTM 15 N Longit

ude (m)", ylab = "UTM 15 N Latitude (m)") 

bd.df <- as.data.frame(bd.raster) 

write.csv(bd.df, "uk_bd_df") 

#Create raster 

writeRaster(acc.uk, filename="accuk.tif", format="GTiff", overwrite=TRUE) 

acc.uk.df <- as.data.frame(acc.uk) 

write.csv(acc.uk.df, "acc_var_df") 

acc.raster <- raster("accuk.tif") 

#plot(acc.raster, main = "Interpolated Organic Fraction across Coast",xlab = "UTM 15 N Long

itude (m)", ylab = "UTM 15 N Latitude (m)") 

acc.df <- as.data.frame(acc.raster) 

write.csv(acc.df, "uk_acc_df") 

#Create raster 

writeRaster(org.uk, filename="organicuk.tif", format="GTiff", overwrite=TRUE) 

org.uk.df <- as.data.frame(org.uk) 

write.csv(org.uk.df, "org_var_df") 
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org.raster <- raster("organicuk.tif") 

#plot(bd.raster, main = "Interpolated Organic Fraction across Coast",xlab = "UTM 15 N Longit

ude (m)", ylab = "UTM 15 N Latitude (m)") 

org.df <- as.data.frame(org.raster) 

write.csv(org.df, "org_bd_df") 

Cell Stats 

multiply_raster <- (acc.uk * bd.uk) 

g_yr <- multiply_raster * 10^10 

cellStats(g_yr, sum) 

## Accretion.Prediction             Variance  

##         8.167580e+13         2.980449e+12 

ton_yr_load <- 8.17*10^13 * 10^-12 

ton_yr_load 

## [1] 81.7 

organic_multiply <- (acc.uk*bd.uk*org.uk) 

org_g_yr <- organic_multiply*10^10 

cellStats(org_g_yr, sum) 

## Accretion.Prediction             Variance  

##         2.260570e+13         6.080061e+10 

org_ton_yr_load <- 2.26*10^13*10^-12 

org_ton_yr_load 

## [1] 22.6 
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